Data science seminar on data curation and model interpretation


Dr. Seid Muhie Yimam House of Computing and Data Science (HCDS) Universität Hamburg Der Forschung i der Lehre i der Bildung

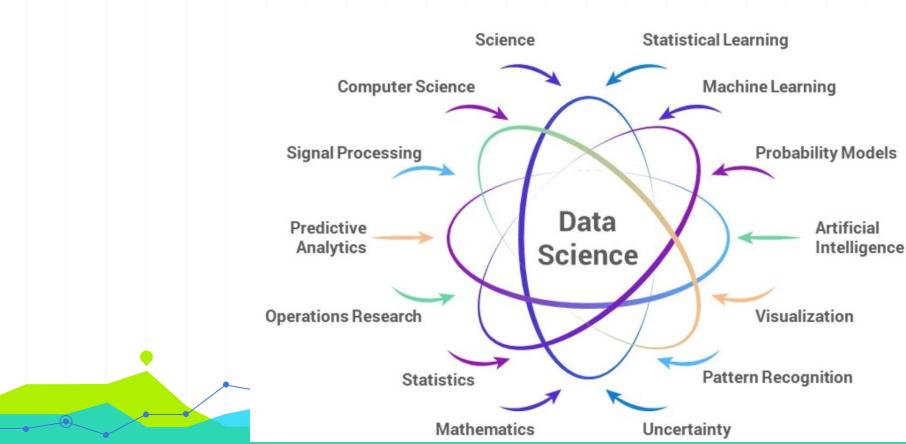
Outlines

 Part one: Introduction to data science Data Sources, collection Annotation tools Part two: Machine learning Model building • Frameworks • Evaluation metrics

Part three:
Model interpretation
Explainablity and Bias
Visualization

Reference

Learn to build interpretable high-performance models with hands-on real-world examples


Serg Masís

Data Science Introduction, basics

https://www.dataguest.io/wp-content/uploads/2019/05/what-is-data-science-1.jpg

Interdisciplinary

Why Data Science

Introduction

- Obtain the second se
- It is rooted in **datafication**, the process of rendering into data aspects of the world that have never been quantified before.
 - **business** networks, the **lists of books** we are reading, the **films** we enjoy, the **food** we eat, our **physical** activity, our **purchases**, our **driving** behavior, and so on.
- Other ingredient of data science is the **democratization** of data analysis.
- Access to cloud computing allows any individual to analyze huge amounts of data in short periods of time.
- Obtain the inferred from data.

Data Science strategies

- 1. **Probing reality**: Data can be gathered by passive or by active methods (the **response** of the world to our actions). Analysis of those responses can be extremely valuable when it comes to taking decisions about our subsequent actions.
- **2. Pattern discovery**: Datified problems can be analyzed automatically to discover useful patterns and natural clusters that can greatly simplify their solutions.
- **3. Predicting future events**: Predictive analytics allows decisions to be taken in response to future events.
- **4. Understanding people and the world**: Understanding natural language, computer vision, psychology and neuroscience.

Toolboxes for data scientists

There are lot of programming language, but Python is the leading one
 Why Python?

- Easy to read and code!
- Interpreted language: executed immediately on console/Notebooks

Reach environment: Console, Ipython/Notebook, IDE

Fundamental Python Libraries for Data Scientists

- Numpy: support for multidimensional arrays with basic operations on them and useful linear algebra functions.
- SciPy: provides a collection of numerical algorithms and domain-specific toolboxes, including signal processing, optimization, statistics, and much more
- Pandas: provides high-performance data structures and data analysis tools. The key feature of Pandas is a fast and efficient DataFrame object for data manipulation with integrated indexing.
- Scikit-Learn: is a machine learning library built from NumPy, SciPy, and Matplotlib. Scikit-learn offers simple and efficient tools for common tasks in data analysis such as classification, regression, clustering, dimensionality reduction, model selection, and preprocessing.

Matplotlib: Used to plot or visualize results, facilitate extracting insights from

Integrated Development Environments (IDE)

• The pieces of any IDE are:

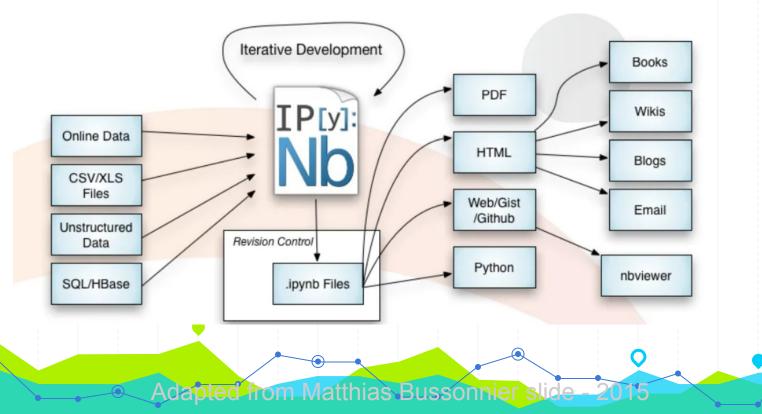
- the editor,
- the compiler, (or interpreter) and
- the debugger
- NetBeans, Eclipse, PyCharm are some general-purpose IDEs
- Spyder is IDE customized with the task of the data scientist in mind

Spyder

The Scientific Python Development Environment

	/ leared	uanitagomez/Local/Dev-Spyder/spyder/spyder/plugins/plots/plugin.py		1			
- • • » =			-	± 8	B .	٩	c
🥏 plugin.py 🗧		c plugin.py - plots* × plot_example.py × plugin.py - ipythonconsole		Name 📥		Size	Value
V 🖪 Plots	1	[# -+- coding: utf-8 -+-		а	feo		foo object ofmain module
- get_name	23	# # Copyright © Spyder Project Contributors		filename	str	53	/Users/Documents/spyder/spyder/tests/ test_dont_use.py
get_description	4	<pre># Licensed under the terms of the MIT License # (see spyder/initpy for details)</pre>					
- get_icon	e i	* (see spydel/litttpy for details/		1	beol		True
– 🔟 register – 🔟 unregister	7	Plats Plugin.		my_set	set		{1, 2, 3}
- m switch_to_plugin	, i i				float		6-46567886443
current_widget	10 11	# Third party imports			rtoat		0.4030/000443
- add_shellwidget	A 12 13	from qtpy.QtCore import Signal		t	tuple		('abcd', 745, 2.23, 'eigh', 78.2)
- III remove_shellwidget	14	# Local imports		thisdict	dict	3	{'brand':'Ford', 'model':'Mustang', 'year':196
set_shellwidget	15 16	from spyder.api.plugins import Plugins, SpyderDockablePlugin from spyder.api.translations import get_translation					
plot_example.py	17	from spyder.plugins.plots.widgets.main_widget import PlotsWidget		tinylist	list		[123, 'efgh']
V % Unnamed cell 1	18 19			×	Array of int64	(2,)	
🗕 🗾 generate_polar_plot	20 21	<pre># Localization _ = get_translation('spyder')</pre>			*****		
- E generate_dem_plot		- Ber-time terment oblact A		У	timedelta		2 days, 0:00:00
🗕 🗾 main	23 24	class Plots(SpyderDockablePlugin):					
😑 plugin.py	25 26	Plots plugin.				Help	Variable Explorer Files
🗸 🚺 IPythonConsole						a resp	
- init_	28 29	NAME = 'plots' REQUIRES = [Plugins.IPythonConsole]		8 8		×	← → ta -a 97 %
- 🔟 update_font		TABIFY = [Plugins.VariableExplorer, Plugins.Help] WIDGET CLASS = PlotsWidget					
- apply_gui_plugin_sett		CONF_SECTION = NAME					
- mail_apply_mpl_plugin_set.	33 34	CONF_FILE = False DISABLE ACTIONS WHEN HIDDEN = False					90*
- apply_advanced_plug							
apply_pdb_plugin_set	36 37	# SpyderDockablePlugin API #					135*
- apply_plugin_settings_		def get_name(self):				-	
- apply_plugin_settings	39 40	return _('Plots')				and-	
toggle_view	41 42	<pre>def get_description(self): return _('Display, explore and save console generated plo</pre>			NAT -	14	
- get_plugin_title						NVE	500 180*
- I get_plugin_icon - I get_focus_widget	44 45	<pre>def get_icon(self): return self.create icon('hist')</pre>			Ser .		450
- closing_plugin				1			
- m refresh_plugin	47 48	def register(self): # Plugins			19 1	Z.	36.73
- get_plugin_actions	49 50	ipyconsole = self.get_plugin(Plugins.IPythonConsole)		-84 41	Carlo and	7 36 71	
- m register_plugin		# Signals		-64.40	-84 39	36.70	225* 315*
- get_clients		<pre>ipyconsole.sig_shellwidget_changed.connect(self.set_shell ipyconsole.sig_shellwidget_created.connect(</pre>	idget)		-84.38		
		self.add_shellwidget)					270*
- aet focus_client							
- get_focus_client - get_current_client	55 56	<pre>ipyconsole.sig_shellwidget_deleted.connect(</pre>					

Web Integrated Development Environment (WIDE): Jupyter


Notebooks

- Used in classrooms
- Used to **show results**
- Based on IPython
- Allow code to produce web-rich representation
 - Image, sound, video, math
- Browser, Server, and kernels can be on different
- .ipynb files json based files embedding input and output

Adapted from Matthias Bussonnier slide

The Notebook Fileformat (`.ipynb`)

Installing/Accessing Jupyter

Jupyter Notebook

Install the classic Jupyter Notebook with:

pip install notebook

💭 jupyterhub

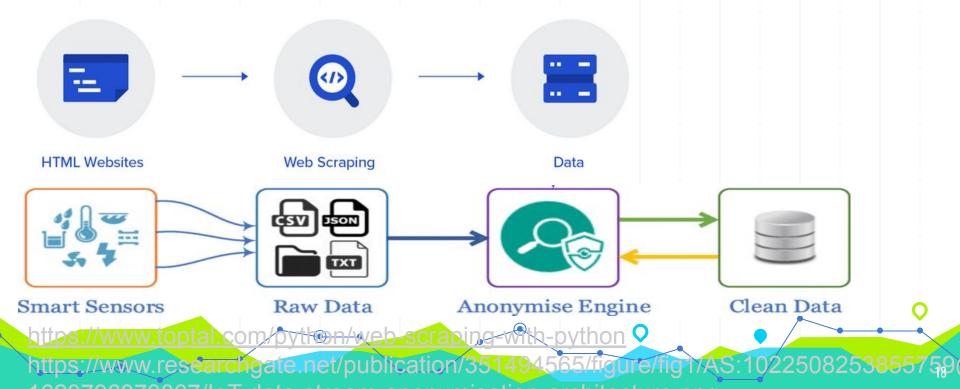
https://code.min.uni-hamburg.de

Colaboratory - Google

15

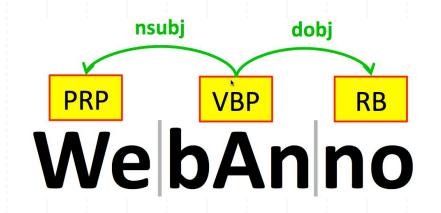
https://colab.research.google.com

Install Anaconda and Jupyter Notebook


Data sources

Primary data – collected from primary data source
 Preliminary data – information gathered from primary data sources
 Primary data sources: Databases, files, measurements from devices (IoT), scraped from online sources, Social media, streaming data, and so on

Data collection strategies


Data source should be identified and gathered

Data Processing and Preprocessing

- Keep the original data intact, **ALWAYS**
- Data processing includes:
 - **Transformation** -> make is appropriate for model preparation
 - Denoising -> remove noise from data
 - Normalization -> organize data for more efficient access
 - Feature extraction -> extract relevant features or attributes that could represent the processed data

WebAnno Annotation, curation, Automation, Agreement

What is WebAnno?

General purpose web-based annotation tool

Covers a wide range of linguistic annotations including various layers of morphological, syntactic, and semantic annotations

Custom annotation layers can be defined, allowing WebAnno to be used also for non-linguistic annotation tasks

What is WebAnno?

Ombigue Multi-user tool, also different roles such as annotator, curator, and project manager

Progress and quality of annotation projects can be monitored and measured in terms of inter-annotator agreement

Multiple annotation projects can be conducted in parallel

What is WebAnno?

O Different modes of annotation:

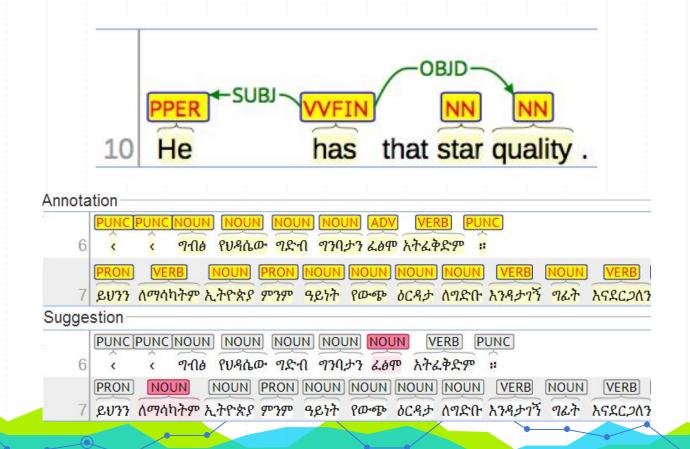
- a correction mode to review externally pre-annotated data
- eautomation mode in which WebAnno learns and offers annotation suggestions
- Curation mode to adjudicate annotation disagreements
- Fully web-based, a modern web-browser is sufficient
- After installation on a web-server, all settings can be reached through the browser

Open-source

Main menu

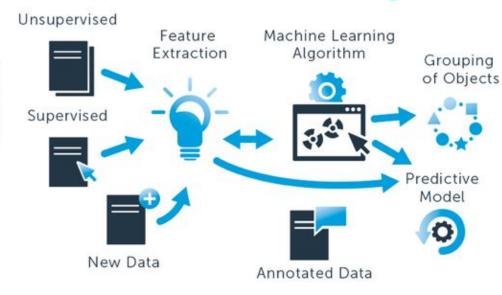
Annotate texts from scratch

- Review and correct previously annotated documents
- Employ integrated machine learning capabilities
- Compare annotations from different annotators and merge them
- Assign workload to annotators and monitor their progress



Annotation interface

• Editing elements always visible; changes take effect immediately


Open Prev. Next Export Settings First Prev. Go to Next Last LTR/RTL so- no-anno-de/de-universal-dev.tsv	Suidelines Done showing 1-5 of 25 sentences
-ROOT	Actions Delete Clear
NOUN VEREDET ADJ amod NOUN	Layer POS 🗘
Manasse ist ein einzigartiger Parfümeur .	Forward annotation ?
ROOT dobje d	Features
PRON VERB Obsil DET PRON POSS NOUN PRT PACK VERB Description 2 Ich hatte Gelegenheit eines seiner Seminare zu besuchen .	Selected text Seminare
PRONI Noun Padpmod Application Es war für mich Ausgangspunkt zu einer Padpmod Noun	PosValue NOUN
ADP DET NUM NOUVERS (NUM) PRON DET (AD) ADPDET (NUM) NOUVERS (NUM) CAPDET (AD) ADDET (AD	
Es ist unbeschreiblich .	Annotation
	editor panel

POS and dependency parsing

Machine Learning Model building, Frameworks, Evaluation metrics

Machine Learning

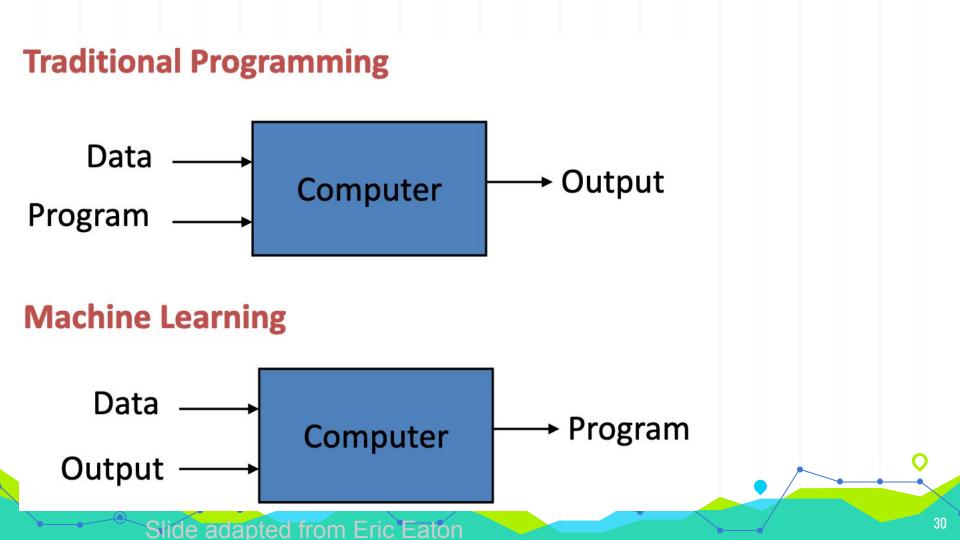
Training Set

https://i.pinimg.com/original s/84/0c/ae/840cae86750d6 6930bff80331f8b9b79.png

27

What is learning

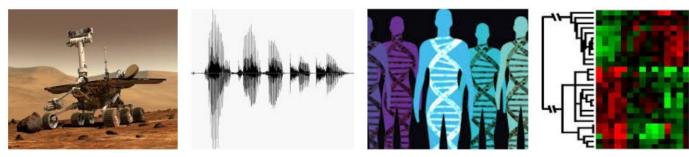
Herbert Simon: "Learning is any process by which a system improves performance from experience."


 A computer program is said to learn from experience E with respect to some class of tasks
 T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

What is machine learning

ML is a branch of artificial intelligence:

- Uses computing based systems to make **sense out of data**
 - Extracting **patterns**, **fitting** data to **functions**, **classifying** data, etc
- ML systems can learn and improve
 - With historical data, time and experience
- Our Bridges theoretical computer science and real noise data.



When do we use machine learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

Slide adapted from Eric Eaton

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

00011(1112

222223333

344445555

467777888

BBS19499 Side adapted from Eric Eaton

Defining the learning task Improve on task T, with respect to performance metric P, based on experience E

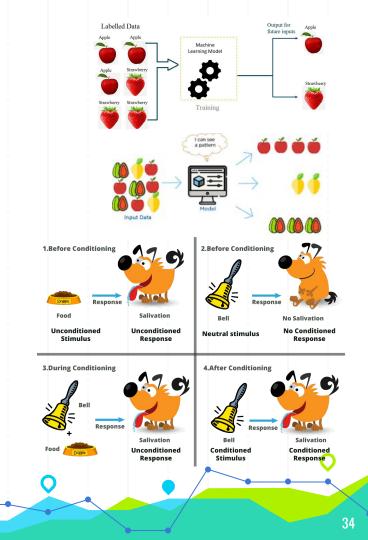
T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself

T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while observing a human driver.

T: Categorize email messages as spam or legitimate.P: Percentage of email messages correctly classified.E: Database of emails, some with human-given labels


Slide adapted from Eric Eaton

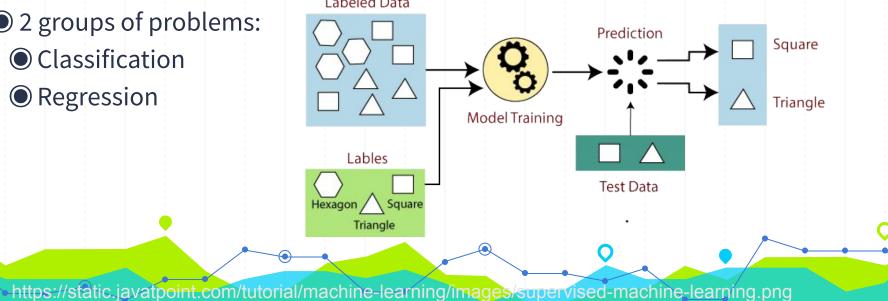
optical	character	recogni				
optical	chorader	recog nil				
OPTICAL	.character	recognit				
Report s	pam					
Report p	Report phishing 🔷					
Show original						
Translate	33					

Types of learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning

Rewards from sequence of actions Slide adapted from Eric Eaton

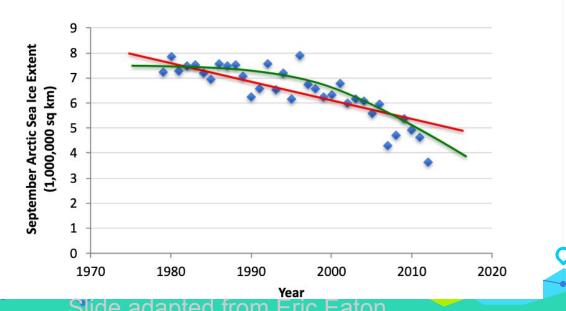
Supervised learning


• For every example in the data there is always a predefined outcome

• Models the relations between a set of descriptive features and a target (Fits data to a function) Labeled Data

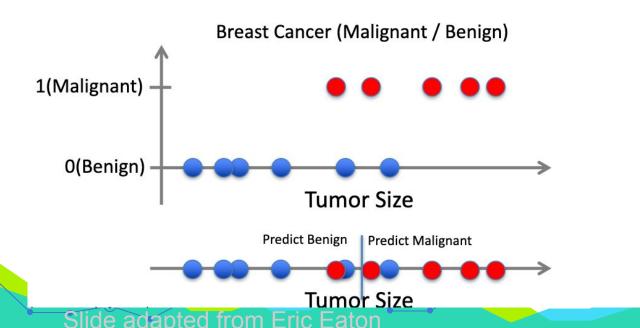
• 2 groups of problems:

Classification


Regression

35

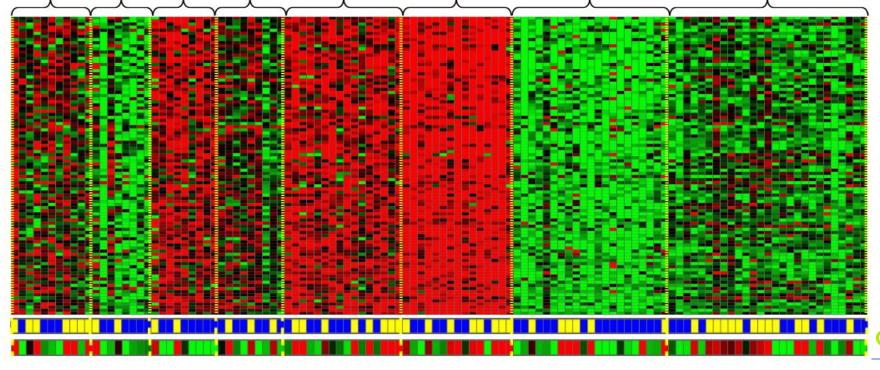
Supervised learning - regression


- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

36

Supervised learning - classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification


37

Unsupervised learning

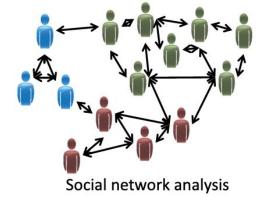
- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Clustering of gene-expression

Individuals

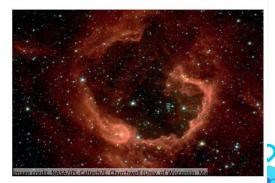
Slide adapted from Fric Faton

Genes

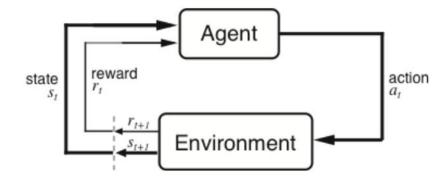

Unsupervised learning

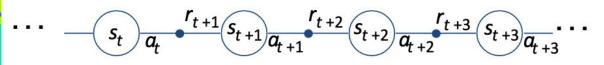
Slide adapted from Eric Eaton

40



Organize computing clusters

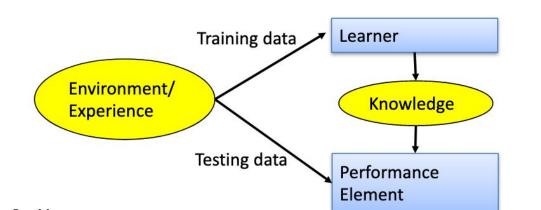

Market segmentation


Astronomical data analysis

The agent-environment interface

Slide adapted from Eric Eaton

Agent and environment interact at discrete time steps : t = 0, 1, 2, KAgent observes state at step t: $s_t \in S$ produces action at step t: $a_t \in A(s_t)$ gets resulting reward : $r_{t+1} \in \Re$ and resulting next state : s_{t+1}



Designing a learning system

Slide adapted from Eric Eaton

42

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the target function
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience

Learning algorithm – linear regression

- F(x) = WX + b
 - W = Weights to learn
 - X = Features from the input
 - b = bias term
- The task *T* is to predict *y*, *which is F(X)*, from *X*, we need to measure performance
 P to know how well the model performs.

 $1/2m \sum (\hat{y}_i - y_i)^2$

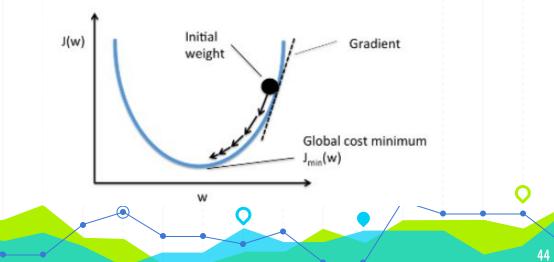
- First calculate error of each example i as :
- Finally calculate the mean for all records:
 Mean Absolute Error (MAE) =

$$e_{i} = abs(\hat{y}_{i} - y_{i})$$

$$/m \sum_{i} abs(\hat{y}_{i} - y_{i})$$

$$(43)$$

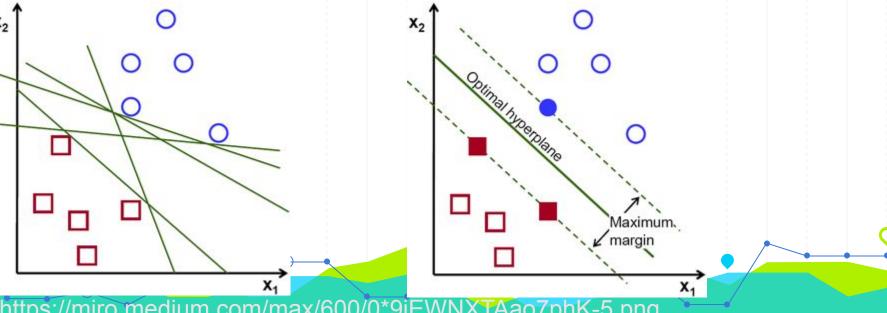
Learning algorithm – linear regression


The main aim of training the ML algorithm is to adjust the weights W to reduce the MAE or MSE

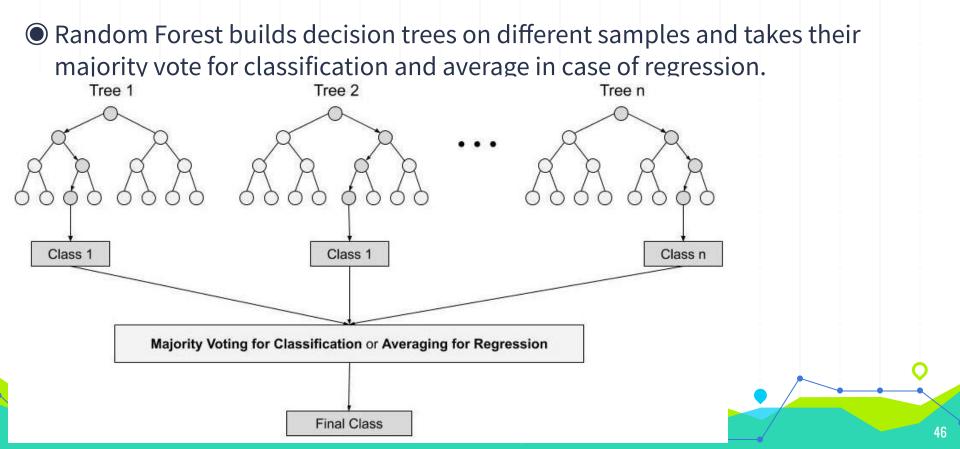
- This is called the **cost function**, J(w) □ minimaxing the error is minimizing the cost function J
- Gradient decent Algorithm
 - Jmin □ minimum cost for W

 $w_i = w_i - \alpha \partial / \partial w_i J(W)$

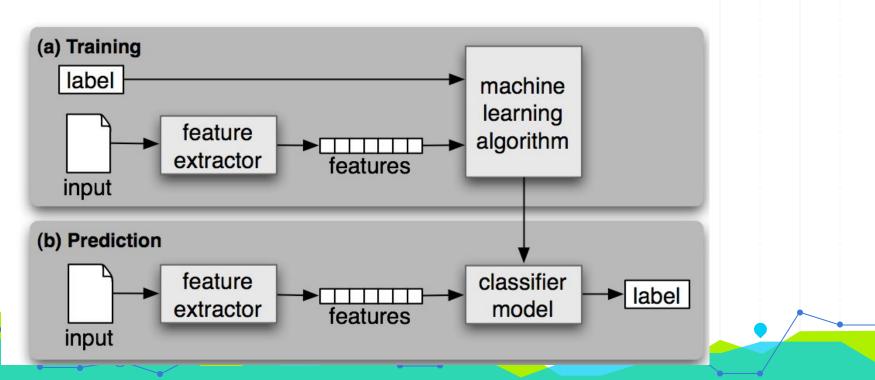
• Gradient decent algorithm:


repeat until minimum cost: {

Learning algorithm - SVM


X₂

The objective of the support vector machine algorithm is to find a hyperplane in an N-dimensional space(N — the number of features) that distinctly classifies the data points.


45

Learning algorithm – Random forest

Feature extraction

The pipeline for supervised classification looks like the following:

Feature extraction

Problem: Sentiment Analysis (detect positive and negative attitude of text)

Given: Training data

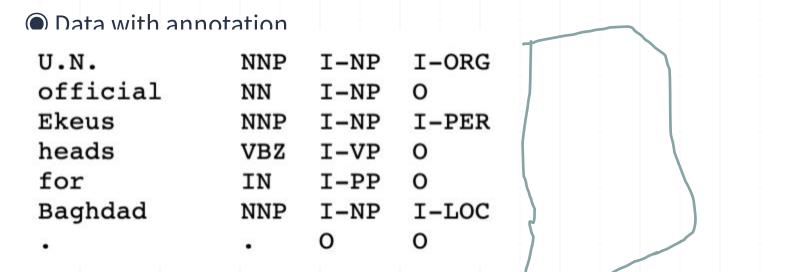
Extract Features

Instance	Class	Class Label			
I like hamsters very r	True	True			
I cannot stand dogs.	False	False			
I love my cat.	True	True			
like	love	hate	1	Class Label	
1	0	0	1	True	
0	0	0	1	False	
0	1	0	1	True	

Train a model which is able to predict the class label

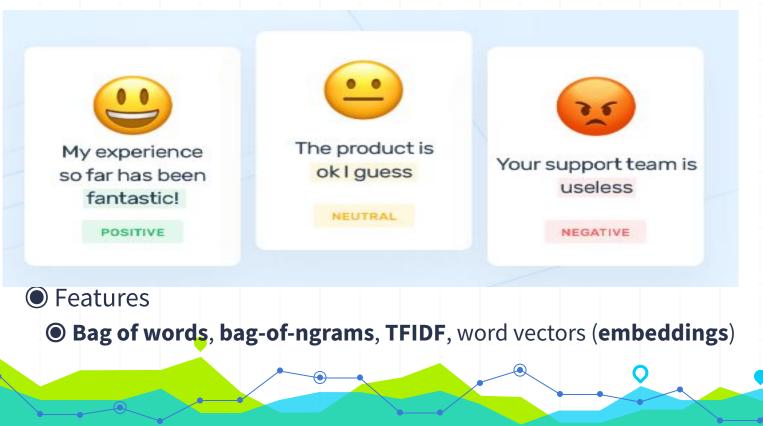
Rental price prediction

Predicting the rental price of single-family houses will have the these features:


Features

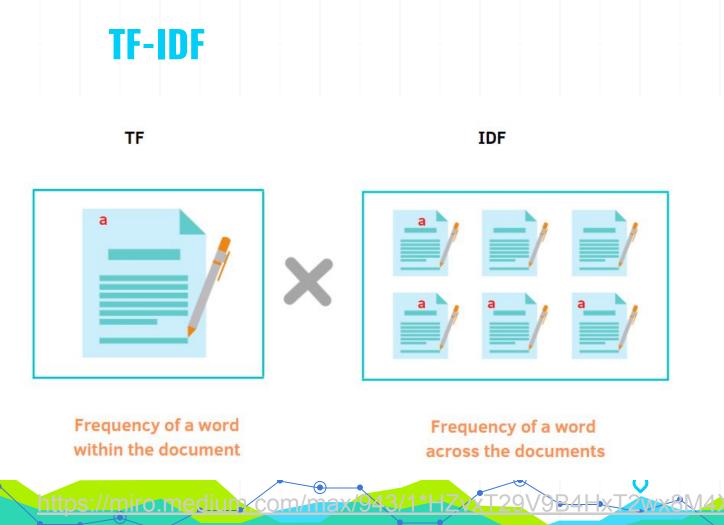
- Number of bedrooms
- Number of bathrooms
- Living area
- Number of stories
- Year built
- Furnished/not furnished
- Fireplace/no fireplace
- Heating/no heating
- ZIP code
- Latitude and longitude

House sales prediction


Named entity and Part-of-speech tagging

• Features:

IsFirstUpper, prefex-n, suffix-n, the token, length, lemma, PoS, isInGazetter, isGeoLocation, Class Labels: PER, ORG, LOC, OTH,


Sentiment classification

Sentiment features - bag of words

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
You heard about the bird	1	1	1	0	1	0	1
The bird is the word	0	1	0	1	2	1	0

ttps://user.oc-static.com/upload/2020/10/23/16034397489042_supin%20bird%20bow.png

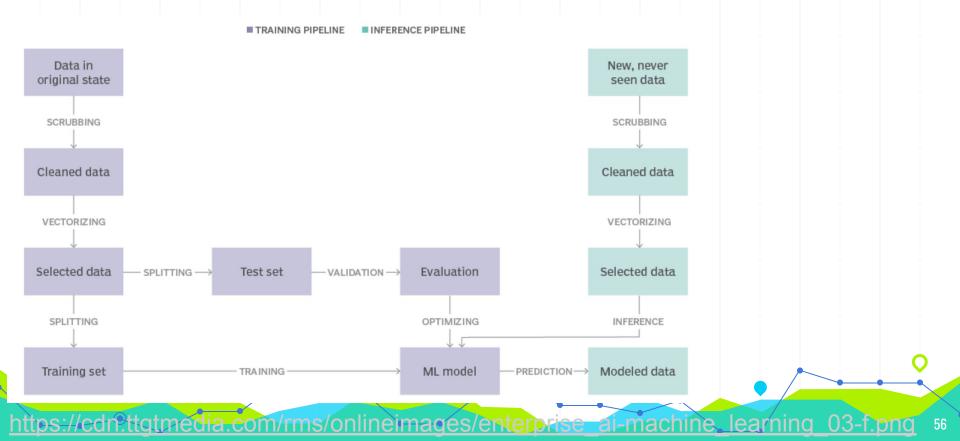


Image classification – feature extraction

0	2	15	0	0	11	10	0	0	0	0	9	9	0	0	0	
0	0	0	4	60	157	236	255	255	177	95	61	32	0	0	29	
0	10	16	119	238	255	244	245	243	250	249	255	222	103	10	0	
0	14	170	255	255	244	254	255	253	245	255	249	253	251	124	1	
2	98	255	228	255	251	254	211	141	116	122	215	251	238	255	49	
13	217	243	255	155	33	226	52	2	0	10	13	232	255	288	36	
16	229	252	254	49	12	0	0	7	7	0	70	237	252	235	62	
6	141	245	255	212	25	11	9	3	0	115	236	243	255	137	0	
0	87	252	250	248	215	60	0	1	121	252	255	248	144	6	0	
0	13	113	255	255	245	255	182	181	248	252	242	208	36	0	19	
1	0	5	117	251	255	241	255	247	255	241	162	17	0	7	0	
0	0	0	- 4	58	251	255	246	254	253	255	120	11	0	1	0	
0	0	4	97	255	255	255	248	252	255	244	255	182	10	0	-4	
0	22	206	252	246	251	241	100	24	113	255	245	255	194	9	0	
0	111	255	242	255	158	24	0	0	6	39	255	232	230	56	0	
0	218	251	250	137	7	11	0	0	0	2	62	255	250	125	3	
0	173	255	255	101	9	20	0	13	3	13	182	251	245	61	0	
0	107	251	241	255	230	98	55	19	118	217	248	253	255	52	-4	
0	18	146	250	255	247	255	255	255	249	255	240	255	129	0	5	
0	. 0	23	113	215	255	250	248	255	255	248	248	118	14	12	0	
0	0	6	1	0	52	153	233	255	252	147	37	0	0	4	1	
0	0	5	5	0	0	0	0	0	14	1	0	6	6	0	0	
					-							-		-		

Model building pipeline

ML frameworks

- Classical ML Algorithms in Sickit-Learn
- Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python.
 - Is built upon NumPy, SciPy and Matplotlib.
 - Can be installed with Anaconda, conda, or pip

pip install -U scikit-learn

conda install scikit-learn

Supervised Learning algorithms: Almost all the popular supervised learning algorithms, like Linear Regression, Support Vector Machine (SVM), Decision Tree etc., are the part of scikit-learn.

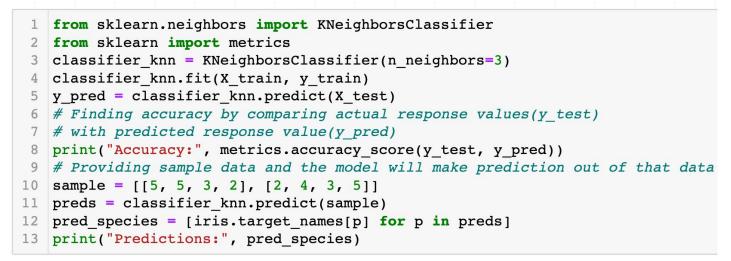
Unsupervised Learning algorithms: On the other hand, it also has all the popular unsupervised learning algorithms from clustering, factor analysis, PCA (Principal Component Analysis) to unsupervised neural networks.

Clustering: This model is used for grouping unlabeled data.

Cross Validation: It is used to check the accuracy of supervised models on unseen data.

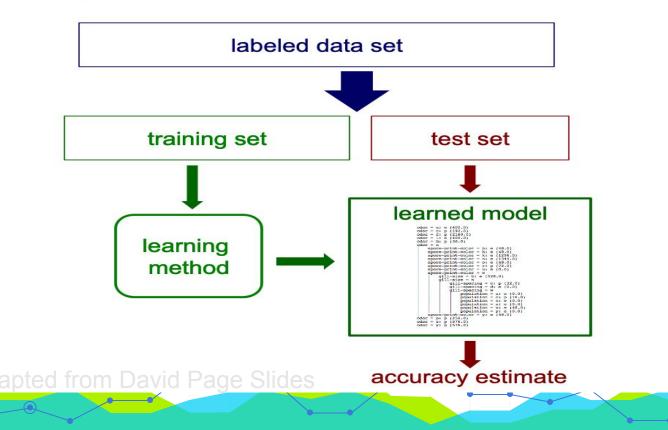
Dimensionality Reduction: It is used for reducing the number of attributes in data which can be further used for summarisation, visualisation and feature selection.

Ensemble methods: As name suggest, it is used for combining the predictions of multiple supervised models.

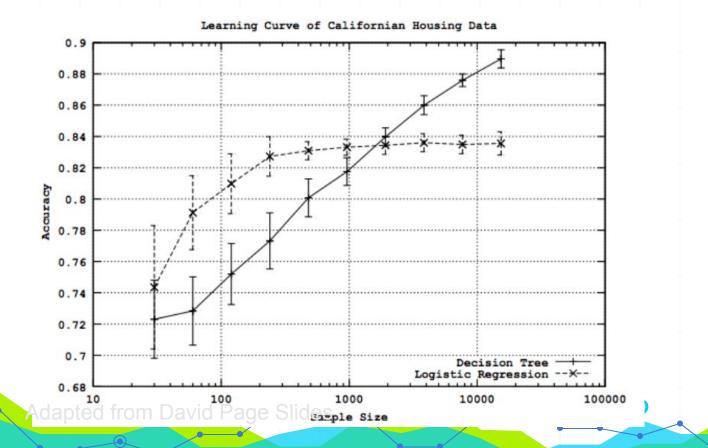

Feature extraction: It is used to extract the features from data to define the attributes in image and text data.

Feature selection: It is used to identify useful attributes to create supervised models. **Open Source:** It is open source library and also commercially usable under BSD license.

Sklearn example iris dataset


```
from sklearn.datasets import load iris
 1
   from sklearn.model_selection import train_test_split
   iris = load_iris()
   X = iris.data
   y = iris.target
 5
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
   random state=1)
   print(X train.shape)
 8
   print(X test.shape)
 9
   print(y train.shape)
10
   print(y test.shape)
11
(105, 4)
(45, 4)
(105,)
(45,)
```

Sklearn – train a model



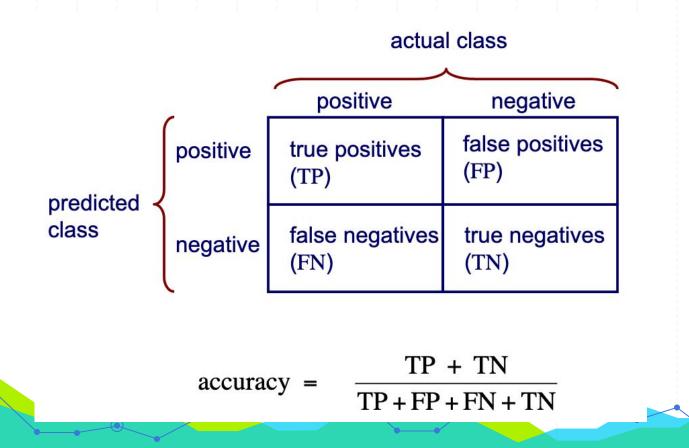
Model evaluation – test sets

How can we get an unbiased estimate of the accuracy of a learned model?

Learning curve

Confusion matrix

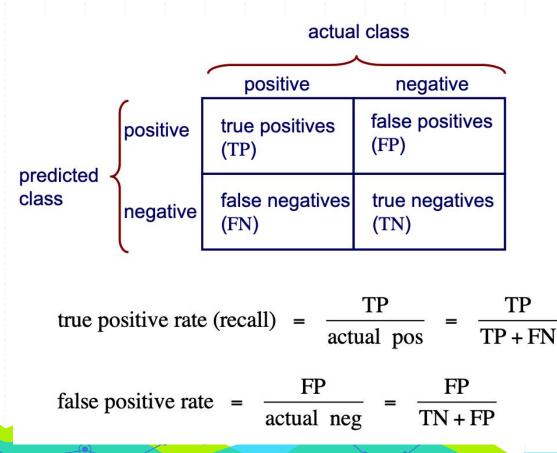
bend jack jump pjump run side n skip walk wave wave2 wave1 wave2 bend jack side skip walk jump pjump run


• Helps to learn mistakes the model makes

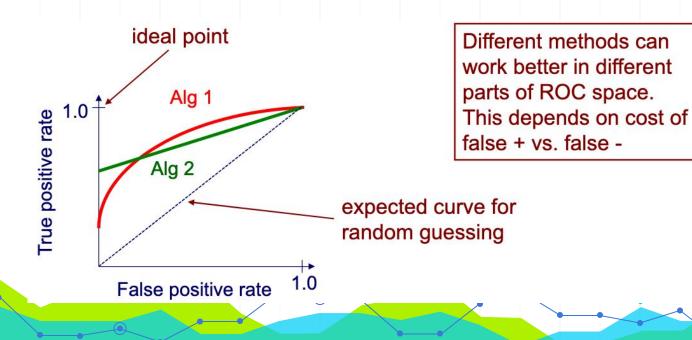
activity recognition from video

actual class

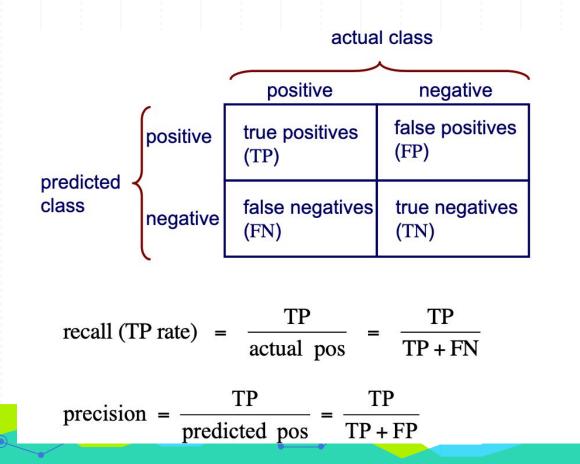
predicted class


Confusion matrix for 2-class problems

Is accuracy an adequate measure of predictive performance?

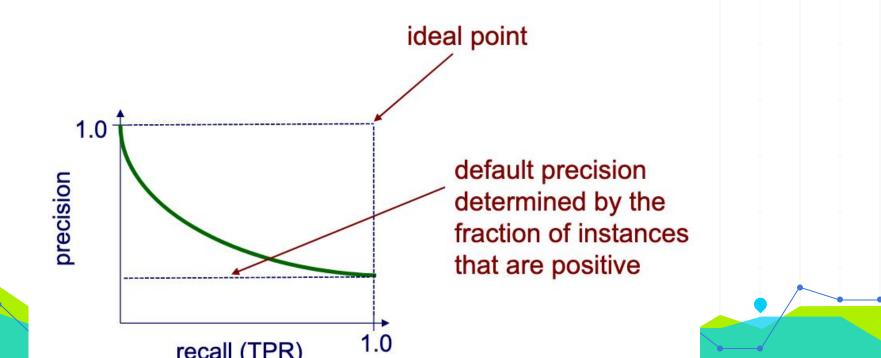

- accuracy may not be useful measure in cases where
 - there is a large class skew
 - Is 98% accuracy good if 97% of the instances are negative?
 - there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
 - we are most interested in a subset of high-confidence predictions

Other accuracy metrics



ROC curves

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied


Other accuracy metrics

68

Precision/recall curves

A precision/recall curve plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied

 $F1 = \frac{2 \ * \ precision \ * \ recall}{precision \ + \ recall}$

 $F1 = \frac{2 \times 0.3 \times 0.1}{0.3 + 0.1}$: F1=0.15

Overfitting and underfitting

- **Bias:** Assumptions made by a model to make a function easier to learn. It is actually the error rate of the training data. When the error rate has a high value, we call it High Bias and when the error rate has a low value, we call it low Bias.
- Variance: The difference between the error rate of training data and testing data is called variance. If the difference is high then it's called high variance and when the difference of errors is low then it's called low variance. Usually, we want to make a low variance for generalized our model.
- Output Stress Stress
- Overfitting: occurs when a model fits exactly against its training data but does not make accurate predictions on testing data.

Overfitting and underfitting

Reasons for Underfitting:

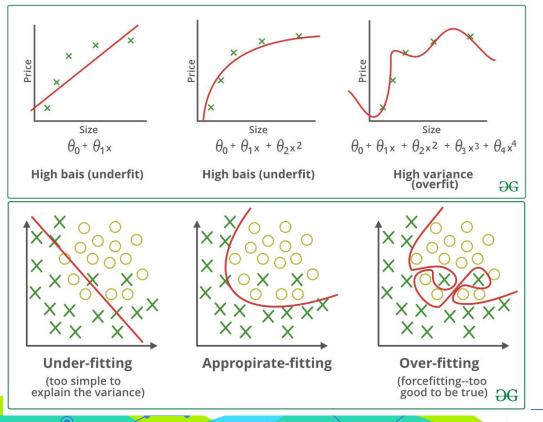
- 1. High bias and low variance
- 2. The size of the training dataset used is not enough.
- 3. The model is too simple.
- 4. Training data is not cleaned and also contains noise in it.

Techniques to reduce underfitting:

- 1. Increase model complexity
- 2.Increase the number of features, performing feature engineering

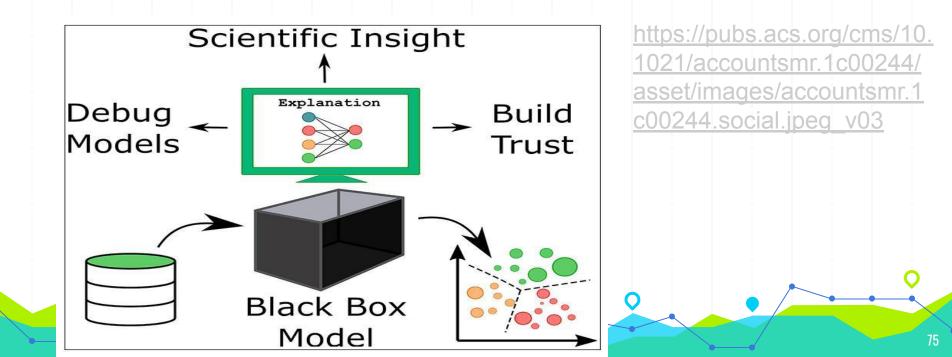
3.Remove noise from the data. https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

Overfitting and underfitting


Reasons for Overfitting are as follows:

- 1. High variance and low bias
- 2. The model is too complex
- 3. The size of the training data

Techniques to reduce overfitting:


- 1. Increase training data.
- 2. Reduce model complexity.
- 3.Early stopping during the training phase (have an eye over the loss over the training period as soon as loss begins to increase stop training).

Overfitting and underfitting

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png

Model Interpretation Interpretability, Explainability, Bias

Interpretability needs

Financial institutions train a model

- On thousands of outcomes
- Using dozens of variables
- Models determine
 - Likelihood that you would **default** on a mortgage (with **higher accuracy**)
- If you are a loan officer to stamp approval/denial based on the models decision:

LOAN APPROVEL

- How will you be sure it is right?
- How will you be sure it is wrong?

Mortgage

[mḋr-gij]

A loan used to purchase or maintain a home, land, or other types of real estate, secured by the property itself.

7

Interpretability needs

- Al is at the root of many products and solutions, as intelligent machines are now powered by learning, reasoning, and adaptation capabilities.
- Compliment human excellence, leveraged by machines, AI is helping to predict accurately, near zero-human innervation.

Prediction

But it is an urgent need to understand how the machines arrived at those decisions.

Model

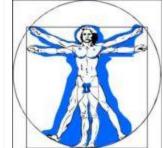
- To interpret decisions made by a machine learning model is
 - to find meaning in it

Data

• trace it back to its source and the process that transformed it.

Training

What is machine learning interpretation?


- To interpret something is to explain the meaning of it.
- That something in ML is an algorithm!
- That algorithm is a mathematical one that takes input data and produces an output, much like with any formula

$\widehat{y} = \beta_0 + \beta_1 x_1$

$rac{1}{3}$ weighted sum of **x features** with β coefficients

- \hat{y} : The predicted value for the response variable
- β_0 : The mean value of the response variable when x = 0
- β_1 : The average change in the response variable for a one unit increase in x
- x: The value for the predictor variable

Example - 25,000 Records of Human Heights (in) and Weights (lbs)

Human <u>Height</u> and <u>Weight</u> are mostly hereditable, but lifestyles, diet, health and environmental factors also play a role in determining individual's physical characteristics. The dataset contains 25,000 synthetic records of human heights and weights of 18 years old children. These data were simulated based on a 1993 by a Growth Survey of 25,000 children from birth to 18 years of age recruited from Maternal and Child Health Centres (MCHC) and schools and were used to develop Hong Kong's current growth charts for weight, height, weight-for-age, weight-for-height and body mass index (BMI).

cla.edu/soct/index.php/SOCR_Data_Dinow_

19

Example...

For our example, we use only 200 (from the web pages home page)
 Fit a linear regression model
 Use height to predict the weight

ndex	Height(Inches)	Weight(Pounds)
1	65.78	112.99
2	71.52	136.49
3	69.40	153.03
4	68.22	142.34
5	67.79	144.30
6	68.70	123.30
7	69.80	141.49
8	70.01	136.46
9	67.90	112.37
10	66.78	120.67
11	66.49	127.45

import math
import requests
from bs4 import BeautifulSoup
import pandas as pd
from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt
from scipy.stats import pearsonr

Fetching the data from the web page

url = \
'http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights'
page = requests.get(url)

Extract content

soup = BeautifulSoup(page.content, 'html.parser')
tbl = soup.find("table", {"class":"wikitable"})

96
97
98
99 >Index>Height(Inches)>Weight(Pounds)
100
101
101
102 >1>5.78

Source view of HTML page

height_weight_df = pd.read_html(str(tbl))[0]\
[['Height(Inches)','Weight(Pounds)']]

Dataframe content

Ount records

num_records = height_weight_df.shape[0] print(num_records)

200 height Show top 5 of the records 0 1 2 3 4

height_weight_df.head()

	Height(Inches)	Weight(Pounds)
0	65.78	112.99
1	71.52	136.49
2	69.40	153.03
3	68.22	142.34
4	67.79	144.30

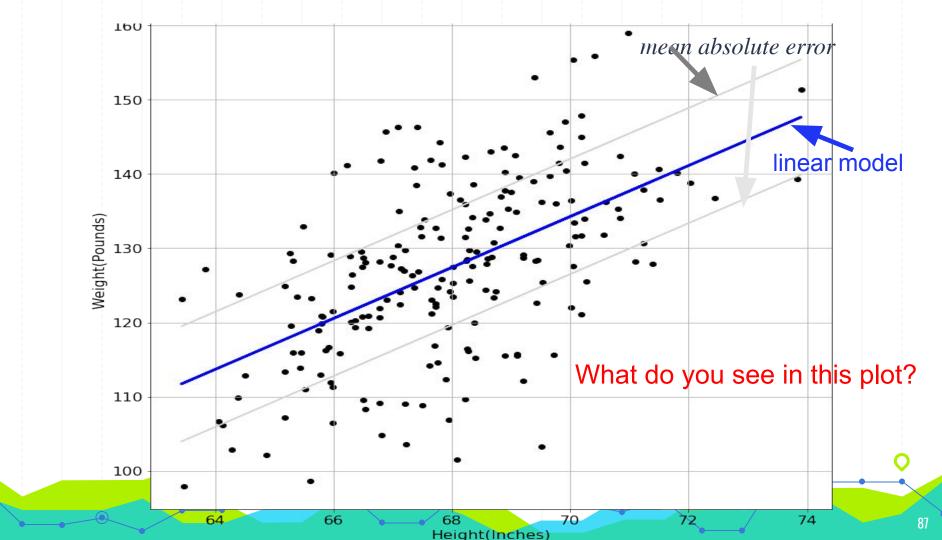
Sklearn model

• Prepare the data for **sklearn** data format (feature **matrix** and target **vector**)

- x = height_weight_df['Height(Inches)'].values.reshape(num_records, 1)
 y = height_weight_df['Weight(Pounds)'].values.reshape(num_records, 1)
- Initialize the sklearn LinearRegression model and fit it with the training data
- model = linear_model.LinearRegression()
 _ = model.fit(x,y)
- Extract the fitted linear regression model intercept and coefficients
 print("ŷ = " + str(model.intercept_[0]) + " + " + \
 str(model.coef_.T[0][0]) + " x1")
 - $\hat{y} = -106.02770644878137 + 3.4326761292716297 x_1$

What does the model tells us?

- On average, for every additional pound, there are **3.4 inches** of height.
- But the actual outcomes and the predicted outcomes are not the same for the training data.
- The difference between the two outcomes is called the **error**/**residuals**.
- Use the mean_absolute_error to measure the deviation between the predicted values and the actual values
- y_pred = model.predict(x)
 mae = mean_absolute_error(y, y_pred)
 print(mae)


7.7587373803882205

What does MAE tells us?

A 7.8 mean absolute error means that, on average, the prediction is deviated
 7.8 pounds from the actual amount.

• Visualizing the linear regression model can shed some light on how accurate these predictions truly are.

```
plt.figure(figsize=(12,12))
plt.rcParams.update({'font.size': 16})
plt.scatter(x, y, color='black')
plt.plot(x, y_pred, color='blue', linewidth=3)
plt.plot(x, y_pred + mae, color='lightgray')
plt.plot(x, y_pred - mae, color='lightgray')
plt.title('')
plt.xlabel('Height(Inches)')
plt.ylabel('Weight(Pounds)')
plt.grid(True)
plt.show()
```


Exploring the plot

- Many weights are 20– 25 pounds away from the predication
- Hence, the MAE can easily fool us if we did not inspect the plot
 - Visualizing the error of the model is important to understand its distribution
- Residuals more or less equally spread out, we say it's homoscedastic (same variance).
- Assumptions to test for linear models includes, in addition to homoscedasticity
 - Linearity
 - Normality (normally distributed),
 - Independence (no relation between the different examples),
 - Multicollinearity (for two and more features)
- Establish a linear relationship between x height and y weight. This association is called a linear correlation.

Pearson's correlation coefficient

- Pearson's correlation coefficient is a statistical method that measures the association between two variables using their covariance divided by their standard deviations.
 - It is between -1 and 1
 - O -> weaker association, +ve number -> positive association, -ve -> negative association

corr, pval = pearsonr(x[:,0], y[:,0]) print(corr)

0.5568647346122995

As height increases, weight also tends to increase, closer to 1 than 0, hence strongly correlated

Pearson's correlation coefficient

- We can also test the **p-value** (the probability of obtaining test results at least as extreme as the result actually observed [1])
- If we test that it's less than an error level of 5% (0.05), we can say there's sufficient evidence of this correlation.

```
print(pval < 0.05)</pre>
```

True

print(pval)

1.102901515126636e-17

1] https://en.wikipedia.org/wiki/P-value

• Do you accept if this model predicted **134** pounds for **71** inches tall?

	Height(Inches)	Weight(Pounds)
count	200.000000	200.000000
mean	67.949800	127.221950
std	1.940363	11.960959
min	63.430000	97.900000
25%	66.522500	119.895000
50%	67.935000	127.875000
75%	69.202500	136.097500
max	73.900000	158.960000

Do you accept if this model predicted 134 pounds for 71 inches tall?
 Yes, it is expected

• What if the model predicts **18 pounds more**?

	Height(Inches)	Weight(Pounds)
count	200.000000	200.000000
mean	67.949800	127.221950
std	1.940363	11.960959
min	63.430000	97.900000
25%	66.522500	119.895000
50%	67.935000	127.875000
75%	69.202500	136.097500
max	73.900000	158.960000

• Do you accept if this model predicted **134** pounds for **71** inches tall?

- Yes, it is expected
- What if the model predicts **18 pounds more**?
 - Yes, the margin is not "so" unusual, even though it is not ideal
- What do we expect for **56 inches tall**? Reliable?

	Height(Inches)	Weight(Pounds)
count	200.000000	200.000000
mean	67.949800	127.221950
std	1.940363	11.960959
min	63.430000	97.900000
25%	66.522500	119.895000
50%	67.935000	127.875000
75%	69.202500	136.097500
max	73.900000	158.960000

• Do you accept if this model predicted **134** pounds for **71** inches tall?

- Yes, it is expected
- What if the model predicts **18 pounds more**?
 - Yes, the margin is not "so" unusual, even though it is not ideal
- What do we expect for 56 inches tall? Reliable?
 - No, the model is fitted on the data of subjects no shorter than 63 inches

• What about we measure for **9-year-old**?

	Height(Inches)	Weight(Pounds)
count	200.000000	200.000000
mean	67.949800	127.221950
std	1.940363	11.960959
min	63.430000	97.900000
25%	66.522500	119.895000
50%	67.935000	127.875000
75%	69.202500	136.097500
max	73.900000	158.960000

• Do you accept if this model predicted **134** pounds for **71** inches tall?

- Yes, it is expected
- What if the model predicts **18 pounds more**?
 - Yes, the margin is not "so" unusual, even though it is not ideal
- What do we expect for 56 inches tall? Reliable?
 - No, the model is fitted on the data of subjects no shorter than 63 inches
- What about we measure for **9-year-old**?
 - No, the data is for 18-year-olds

	Height(Inches)	Weight(Pounds)
count	200.000000	200.000000
mean	67.949800	127.221950
std	1.940363	11.960959
min	63.430000	97.900000
25%	66.522500	119.895000
50%	67.935000	127.875000
75%	69.202500	136.097500
max	73.900000	158.960000

- Is this model realistic?
 - No. we need to add more features such as gender, age, diet, activity level,...
- Explore if it is fair to include or not to include features
- Selection bias, what if the dataset is dominated by one group, for example male for gender?
- Omitted variables bias, what of important features, such as poverty, pregnancy, lifestyle choices are missed?
- Feature importance, which features impact model performance?

• More feature, complex model.

Model interpretation questions?

- 1. Can we explain that predictions were made **fairly**?
- 2. Can we trace the predictions reliably **back to something** or someone?
- Can we explain how predictions were made? Can we explain how the model works?

And ultimately, the question to answer is :

Can we trust the model?

The FAT concept

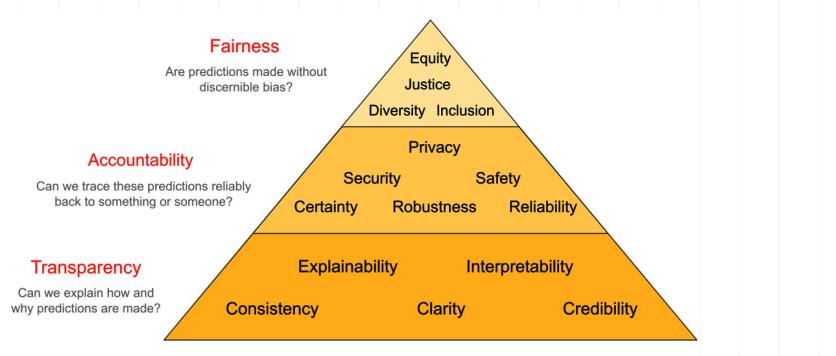


Figure 1.2 – Three main concept of Interpretable Machine Learning

Interpretability and explainability

Interpretability and explainability are not synonyms

Interpretability is the extent to which humans, including non-subject-matter experts, can understand the cause and effect, and input and output, of a machine learning model.

• Easily answer

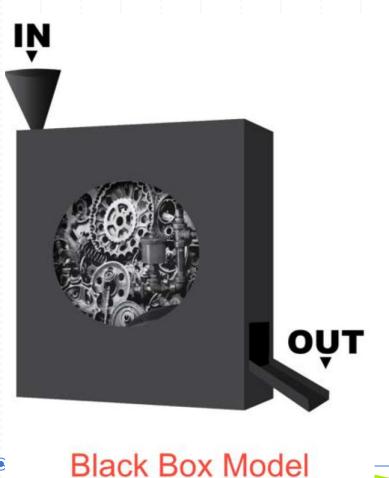
- why does an input to a model produce a specific output?
- What are the requirements and constraints of the input data?
- What are the confidence bounds of the predictions?
- why does one variable have a more substantial effect than another?

Interpretability

- Complexity of model
 - A lot can make the model complex and difficult to interpret, such as math involved in the model, dataset selection, feature selection, model training, parameter tuning
- Opaque models interpretability: models which are complex
 - Post-hoc-interpretability: if the predictions are still trustworthy
 - Like we can't explain how a human brain makes a choice, but we often trust its decision

https://i0.wp.com/blog.frontiersin.org/wp-content/uploads/2016/06/sh utterstock 374233666.jpg?fit=940%2C940&ssl=1

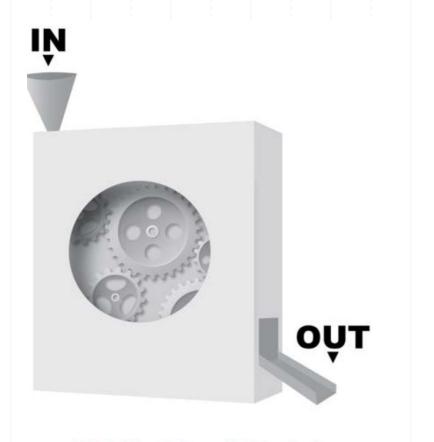
Interpretability


• When does interpretability **not that much required**?

- When incorrect results have no significant consequences. Example, find and read postal code in a package. Cost of misclassification is low
- When there are consequences, but these have been studied sufficiently and validated enough in the real world to make decisions without human involvement. Example, traffic-alert and collision-avoidance system (TCAS)
- Interpretability is needed for systems to have the following attributes:
 - Minable for scientific knowledge: example climate model
 - Reliable and safe: example self driving
 - Ethical: example gender-biased translation
 - Conclusive and consistent

Black-box models

- Black-box/opaque models only the input and outputs are observable but can not see the input transformation process.
- The mechanisms are not easily understood



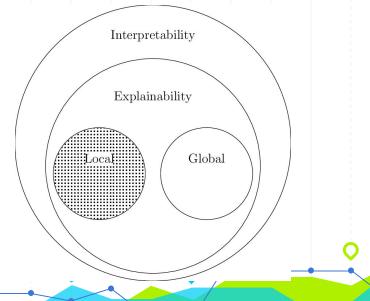
Has complex mechanisms

102

White-box models

 White-box/transparent models achieve a total or near-total interpretation transparency
 They are intrinsically interpretable

White Box Model


Has simple mechanisms

Explainability

• Explainability encompasses everything interpretability is.

- Goes deeper on the **transparency requirement** than interpretability
- Demands human friendly explanations for a model's inner workings and the model training process, not just model inference
- Model, design, and algorithmic transparency

https://www.researchgate.net/publication/346680 834/figure/fig1/AS:966175886409733@1607365 690658/Interpretability-and-explainability-algorith ms-The-present-work-is-focused-on-local.png

Explainability

Model transparency: Being able to explain how a model is trained step by step.

- In the prev. example, how the optimization method called ordinary least squares finds the β coefficient that minimizes errors in the model.
- Design transparency: Being able to explain choices made, such as model architecture and hyperparameters. For instance, choices based on the size or nature of the training data .
- Algorithmic transparency: Being able to explain automated optimizations such as grid search for hyperparameters

Transparency requirements

- Scientific research: for reproducibility
- Clinical trials: reproducible and statistically grounded
- Consumer product safety testing: when life-and-death safety is a concern
- Public policy and law: algorithmic governance, one day, government could be entirely run by algorithms
- Criminal investigation and regulatory compliance audits: danger due to algorithms, such as at chemical factory or autonomous vehicle, decision trial is

needed

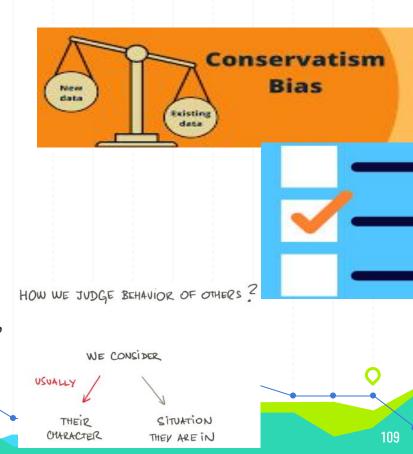
A business case for interpretability

- Setter decisions: models are trained and evaluated against a desired evaluation metrics. Models are deployed once they pass held-out/test datasets, but they can fail once deployed in real time application, for example:
 - Trading algorithm crash stock market
 - Smart home devices terrifying their users
 - License recognition system fine the wrong driver
 - Racially biased surveillance system, wrong shoot
 - A self-driving car could mistake snow for a pavement

Why?

A business case for interpretability

- Focusing on just optimizing metrics can be a **recipe for disaster**
- In the lab the model might perform well, but you have to ask **why**?
 - You might miss an **opportunity to improve it otherwise**
- Example
 - What the self-driving car thinks a **road is not enough**, why so?
 - If the reason is that the road is light-colored, **this is dangerous**
 - If you know why, you could add road images from **winter**
- Making the model more interpretable is not to make it less complex, it is to make it learn different aspects of the environment.


Decision biases

• Conservatism bias: new information evolve but our prior belief won't change

• Salience bias: some features might be prominent, we need to consider others too

• Fundamental attribution error:

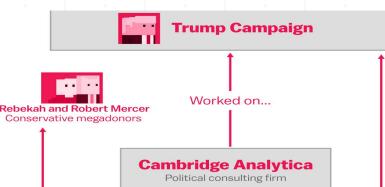
 attribute outcomes to behavior rather than circumstances, character rather than situations, nature rather than nurture.

Outliers

• One crucial **benefit** of model interpretation is **locating outliers**. These outliers

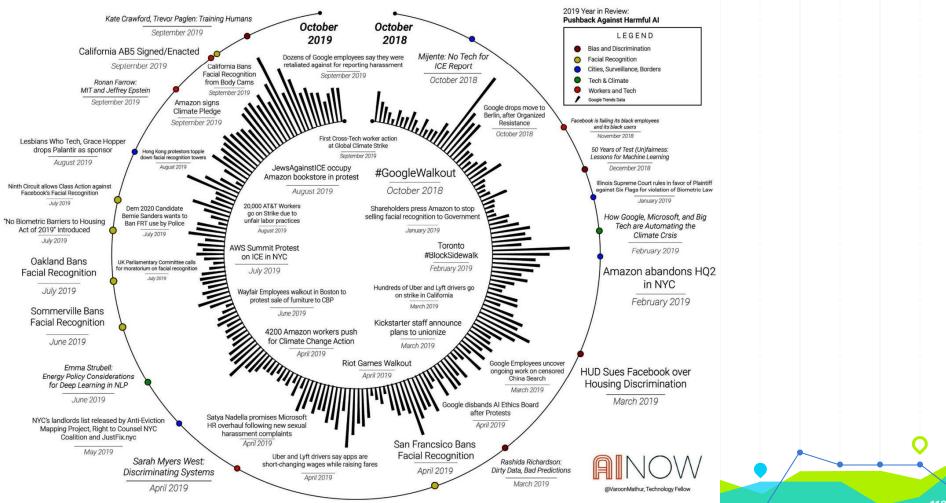
could be a potential new source of **revenue** or a **liability** waiting to happen.

Knowing this can help us to prepare and strategize accordingly.

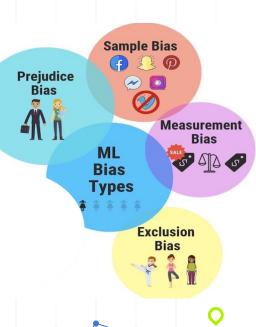

More trusted brands

- Trust is defined as a belief in the reliability, ability, or credibility of something or someone
- Organization trust is their reputation
- **Court** all it takes is one accident, controversy, or fiasco to lose trust
- Example: Boeing after the 737 MAX debacle or Facebook after the 2016 presidential election scandal
 - Short-sighted decisions optimized a single metric, forecasted plane sales or digital ad sales!
 - Organizations resort to fallacies to justify reasoning, confuse public, distract media

narratives


• Lose credibility (what they do, what they say)

XAI - Trust


Oue to trust issues, many AI-driven technologies are losing public support, to the detriment of both companies that monetize AI and users that could benefit from them.

Ethical Issues

- A Machine learning model's programming has no programmer because the "programming" was learned from data, and there are things a model can learn from data that can result in ethical transgressions. Top among them are biases such as the following:
 - Sample bias: When your data, the sample, doesn't represent the environment accurately, also known as the population
 - Exclusion bias: When you omit features or groups that could otherwise explain a critical phenomenon with the data
 - Prejudice bias: When stereotypes influence your data, eithe directly or indirectly
 - Measurement bias: When faulty measurements distort your

data

- A ML model learns from data nothing more
- The more you work on your **data quality**, the more your model is interpretable
- Focus on deployment test, that is where the model will be realistically evaluated
- If you can explain your model, you know how to fix the drawbacks
 easily
- You have to to take predictions from models deployed by others with
 - a grain of salt, make sure the model is explainable, reproducible!

